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GRÉGORY NUEL,∗ University Paris Descartes, MAP5, UMR CNRS 8145

Abstract

In the framework of pattern in random texts, the Markov chainembedding techniques

consist to turn the occurrences of a pattern over an orderm Markov sequence into

those of a subset of states into an order1 Markov chain. In this paper, we use the

theory of language and automata to provide space optimal Markov chain embedding

through the new notion of Pattern Markov Chain (PMC) an give explicit constructive

algorithms to build the PMC associated to any given pattern problem. The interest of

PMC is then illustrated through the exact computation of p-values which complexity

is discussed and compared to other classical asymptotic approximations. Finally, we

consider two illustrative examples of highly degenerated pattern problems (structured

motifs and PROSITE signature) which further illustrate theusefulness of our approach.
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signatures
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1. Introduction

The theory concerning pattern and motif occurrence in random strings has been of interest since 1950s.

Computational molecular biology has been a major area of application of this theory since late 1980s. A

variety of methods have been suggested in the literature fortreating exact distribution properties associated

with pattern occurrence. For example, combinatorial and classical probabilistic methods have been used

in Guibas and Odlyzko (1981); Chryssaphinou and Papastavridis (1990); Robin and Daudin (1999, 2001);
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Stefanov (2003), Markov chain embeddings - in Fu (1996); Chadjiconstantinidis et al. (2000); Antzoulakos

(2001); Fu and Chang (2002), Markov renewal embeddings - in Biggins and Cannings (1987), exponential

families with either Markov chain or Markov renewal embeddings - in Stefanov and Pakes (1997, 1999);

Stefanov (2000) , and martingale techniques - in Li (1980); Glaz et al. (2006).

An overview of some of these methods has been provided by Reinert et al. (2000). None of the available

methods is uniformly superior as far as computation of relevant distributions is concerned. Furthermore,

it has been noticed that the computational effort is substantial for any of the available methods when the

pattern cardinality (number of string the pattern contains) becomes relatively large.

Inspiring from pattern matching theory, Nicodeme et al. (2002) first proposed to overcome this problem

using Deterministic Finite Automata (DFA) in order to get moment generating function of pattern counts

through the Chomsky and Schützenberger algorithm. A very similar approach using exponential families

have also been proposed by Crochemore and Stefanov (2003).

The purpose of this paper is to push forward the connexion between patterns and automata by introducing

an optimal Markov chain embedding through the notion of Pattern Markov Chains (section 2). We then

illustrate how this new tool can be used to perform efficient exact and approximate pattern computations

(section 3) and the paper ends with two highly degenerated biological patterns applications where our method

proves its practical usefulness (section 4).

2. Pattern Markov Chains

2.1. Automata and languages

In this part we first introduce some classical definitions andresults of the well known theory of languages

and automata Hopcroft et al. (2001).

We considerA = {a1, . . . , ak} afinite alphabetwhich elements are calledletters. A word (or sequence)

overA is a sequence of letters and alanguageoverA is a set of words. We denote byε theempty word. For

example abbaba is a word over the binary alphabetA = {a, b} andL = {ab, abbaba, bbbbb} is a language

overA.

TheproductL1 · L2 (the dot could be omitted) of two languages is the language{w1w2, w1 ∈ L1, w2 ∈

L2} (wherew1w2 is the concatenation – or product – ofw1 andw2. If L is a language,Ln = {w1 . . . wn with

w1, . . . wn ∈ L} and thestar closureof L is defined byL∗ = ∪n>0L
n. The languageA∗ is hence the

set of all possible words overA. For example we have{ab} · {abbaba, bbbbb} = {ababbaba, abbbbbb};
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FIGURE 1: Graphical representation of the DFA(A,Q, s,F , δ) with A = {a, b}, Q = {0, 1, 2, . . . , 10, 11}, s = 0,

F = {11} andδ(0, a) = 1, δ(0, b) = 0, δ(1, a) = 1, δ(1, b) = 2, δ(2, a) = 3, δ(2, b) = 4, δ(3, a) = 5, δ(3, b) = 1,

δ(4, a) = 5, δ(4, b) = 0, δ(5, a) = 6, δ(5, b) = 2, δ(6, a) = 7, δ(6, b) = 8, δ(7, a) = 9, δ(7, b) = 2, δ(8, a) = 10,

δ(8, b) = 4, δ(9, a) = 1, δ(9, b) = 11, δ(10, a) = 5, δ(10, b) = 11, δ(11, a) = 3 andδ(11, b) = 4. This DFA is the

smallest one that recognize the languageL = AW1 with A = {a, b}, W1 = abA1aaA1ab and hence|W1| = 4.

{ab}3 = {ababab} and{ab}∗ = {ε, ab, abab, . . .}

A regular languageis either the empty word, or a single letter, or obtained by union, product and star

closure of regular languages.A∗ is regular. Any finite language is regular.

Definition 1. If A a finite alphabet,Q a finite set of states,s ∈ Q a starting state,F ⊂ Q a subset of final

states andδ : Q × A → Q a transition function then(A,Q, s,F , δ) is aDeterministic Finite Automaton

(DFA). For all a = a1 . . . ad−1ad ∈ Ad (d > 2) andq ∈ Q we recursively defineδ(q, a1 . . . ad−1ad) =

δ(δ(q, a1 . . . ad−1), ad). A word w ∈ Ah is is accepted(or recognized) by the DFA if δ(s, w) ∈ F . The set

of all words accepted by a DFA is called its language. See on figure 1 a graphical representation of a DFA.

We can now give the most important result of this part which isa simple application of the classical

Kleene and Rabin & Scott theorems Hopcroft et al. (2001):

Theorem 1. For any rational languageL there exists a unique (up to a unique isomorphism) smallest DFA

which language isL.
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k 1 2 3 4 5 6 7 8 9 10 11

|Wk| 4 16 64 256 1 024 4 096 16 384 65 536 262 144 1 048 576 4 194 304

L 12 27 57 122 262 562 1 207 2 592 5 567 11 957 25 682

F 1 3 6 13 28 60 129 277 595 1 278 2 745

TABLE 1: Characteristics of the smallest DFA that recognizes the languageL = AWk with A = {a, b} andWk =

abAkaaAkab. The pattern cardinality is|Wk| = 2k × 2k = 4k, L is the total number of states andF the number of

final states.

2.2. Connexion with patterns

We callpatternover the finite alphabetA any finite language over the same alphabet such as no element

is included into another one (this last condition is used to simplify many definitions and results by avoiding

degenerated cases). For any patternW any DFA that recognizes the regular languageA∗W is said to be

associatedwith W . According to theorem 1, there exists a unique (up to unique isomorphism) smallest DFA

associated with a given pattern.

For example, if we work with the binary alphabetA = {a, b} then the smallest DFA associated with the

patternW1 = abA1aaA1ab hasL = 12 states andF = 1 final state. A graphical representation of this DFA

is given in figure 1.

It is well known from the pattern matching theory Cormen et al. (1990); Crochemore and Hancart (1997)

that such a DFA provides a simple way to find all occurrences ofthe corresponding pattern in a sequence. In

the following, we will see how to exploit this remarkable property to study the distribution of patterns.

One should not that in the special case where our pattern contains only one word there is an easy way to

build its smallest associated DFA:

Proposition 1. If W = {w = w1 . . . wh} a single word of lengthh then its smallest associated DFA is of

sizeL = h + 1 and defined byQ = {ε, w1, w1w2, . . . , w} the set of all prefixes ofw, s = ε, F = {w} and

for all q ∈ Q anda ∈ A, δ(q, a) is simply defined as the longest suffix ofqa (concatenation ofq anda) in

Q.

In the case of a general pattern, a similar method can producean associated DFA (consider forQ the

union of all pattern prefixes) but it would not necessary be the smallest one. In order to be more efficient in

the DFA design, one should use instead the classical and wellknown algorithms provided by the theory of
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FIGURE 2: Graphical representation of the smallest DFA associatedwith W2 = abA2aaA2ab. This DFA hasL = 27

states includingF = 3 final states.

languages and automata (regular expression to FSA, determinization and epsilon removal).

For example, let us consider the patternWk = abAkaaAkab (k > 1) over the binary alphabetA = {a, b}.

Table 1 shows that the number of final states is (often dramatically) smaller than the cardinal of the pattern.

W1 is recognized by the DFA of figure 1,W2 by the one of figure 2 andW11, a pattern with a cardinal of

several millions, is recognized by a DFA having only a few thousands states.

Assuming from now that a DFA (smallest or not) associated with our pattern has been built, we can give

the main result of this part:

Theorem 2. if X = X1X2 . . . Xi . . . is a i.i.d. sequence onA, W a pattern and(A,Q, s,F , δ) an

associated DFA then sequenceY = Y0Y1Y2 . . . Yi defined by

Y0 = s and Yi = δ(Yi−1, Xi) for all i > 1

is an order1 Markov chain which transition matrix is given by

Π(p, q) =





P(X1 = a) if δ(p, a) = q

0 if q /∈ δ(p,A)

and such as occurrences ofW in X correspond to occurrences of a subset of letters inY (hereF). A Markov

chain having these properties is called aPattern Markov Chain(PMC). Moreover, if the DFA is optimal (i.e.
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has the smallest number of states) then the resulting PMC hasthe same property.

Proof. By definition, the sequenceY is obviously an order1 Markov chain. Moreover, if an occurrence

of W ends at positioni in X , the sequenceX1 . . . Xi ends with an occurrence of the pattern and is therefore

an element ofA∗W and thus is accepted by the DFA which means thatYi ∈ F and the first part of the

theorem is proved.

Let us now assume that it exists a setQ, a subsetF ⊂ Q and a functionG : A∗ → Q∗ such as:

i) ∀x ∈ A∗ we denotey = G(x); ∀0 6 i 6 |x|, W ends in positioni in x ⇐⇒ yi ∈ F ;

ii) if X is i.i.d. thenY = G(X) is an order 1 Markov chain.

For all x ∈ A∗ anda ∈ A we denote by∆(x, a) the state in position|xa| in f(xa) and we define

recursively the functioñG : A∗ → Q∗ by G̃(ε) = G(ε) andG̃(xa) = G̃(x)∆(x, a) ∀a ∈ A, x ∈ A∗. We

define now∆̃(G̃(x), a) = ∆(x, a) on the quotient space(A∗)R wherexRx′ ⇐⇒ G̃(x) = G̃(x′).

Thanks to (ii), it existsδ : Q × A → Q such as∆̃(yq, a) = δ(q, a) for all yq ∈ G̃(A∗) anda ∈ A.

Hence(A,Q, s = G̃(ε)0,F , δ) is a DFA associated withW and the second part of the theorem is proved.

One should note that the transition matrix of a PMC is sparse (onlyk×L non zero terms amongL2, where

k is the alphabet size) and that we have a natural decomposition of this transition matrix intoΠ = P + Q

whereQ contains all transitions toward counting states andP the regular ones.

Example 1. Let us consider the patternW1 = abA1aaA1ab over the binary alphabetA = {a, b}. Its

smallest associated DFA is represented on figure 1. IfX is the original sequence, we build the PMCY as

follows (final states in bold):

X = − a b a a a b b a a a a b b a a b a b a b

Y = 0 1 2 3 5 6 8 4 5 6 7 9 11 4 5 6 8 10 11 3 2

We see two occurrences ofW1: one ending in position 12 (abbaaaab) and one in position 18 (abbaabab,
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overlapping the previous occurrence). The transition matrix of Y is given by

Π =




µb µa 0 0 0 0 0 0 0 0 0 0

0 µa µb 0 0 0 0 0 0 0 0 0

0 0 0 µa µb 0 0 0 0 0 0 0

0 0 µb 0 µa 0 0 0 0 0 0 0

µb 0 0 0 0 µa 0 0 0 0 0 0

0 0 µb 0 0 0 µa 0 0 0 0 0

0 0 0 0 0 0 0 µa µb 0 0 0

0 0 µb 0 0 0 0 0 0 µa 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 µb 0 0 0 0 0 µa 0

0 µa 0 0 0 0 0 0 0 0 0 µ∗
b

0 0 0 0 0 µa 0 0 0 0 0 µ∗
b

0 0 0 µa µb 0 0 0 0 0 0 0




where transitions with∗ belong toQ and withµ· = P(X1 = ·).

As explained in the introduction, the authors of Nicodeme etal. (2002) proposed to use pattern’s DFA

to get the pattern generating function through the Chomsky &Schützenberger algorithm and derive from it

exact results and asymptotic moments. More recently, Crochemore and Stefanov (2003) used the pattern’s

automaton conjointly with exponential families results inthe same aim. Instead of focusing of generating

function only (as done in these papers), we propose here a more straightforward and practical approach

consisting to exploit our new PMC to improve a wide range of classical pattern methods.

2.3. Extensions

The methods we have presented until now are only valid for overlapping occurrences of a pattern in a

i.i.d. sequence. We propose here to extend our results to Markov sequences or to renewal occurrences.

2.3.1. Markov chainsIn order to extend our results to Markov chain sequences, we first need to introduce

the following definition

Definition 2. A DFA (A,Q,F , s, δ) where it existsq ∈ Q anda, b ∈ Am such asa 6= b andδ(q, a) =

δ(q, b) is calledm-ambiguous. A DFA which is notm-ambiguous is also calledm-unambiguous.



8 G. Nuel

0

b

1

a 11

3

a

4
b

2
b

12
a

a

b

b
13

a

b

5
a

b

6

a

7
a

8b

b 9
a

b
10

a

b

a

ba

b a

b
a

FIGURE 3: Graphical representation of the smallest non 2-ambiguous DFA associated withW1 = abA1aaA1ab with

A = {a, b}. This DFA have been built from the DFA of figure 1 through algorithm 1.

Please note that them-ambiguity presented here is different from the classical notion ofambiguityfor DFA

(meaning that it exists two different path to recognize the same language element).

For any DFA(A,Q, s,F , δ) we define for allq ∈ Q and for allm > 1 the following notations:

δ−m(q) = {a ∈ Am, ∃p ∈ Q, δ(p, a) = q} and ∆−1(q) = {p ∈ Q, ∃a ∈ A, δ(p, a) = q}

Hence, such a DFA ism-unambiguous if allδ−m(q) are singletons.

Theorem 3. if X = X1 . . . Xn is an orderm > 1 Markov sequence onA, W a pattern and(A,Q, s,F , δ)

a nonm-ambiguous DFA which language isA∗W then the sequenceY = Ym . . . Yn defined by

Y0 = s and Yi = δ(Yi−1, Xi) for all 1 6 i 6 n

is an order 1 Markov chain which transition matrix is given by

Π(p, q) =





P(Xm+1 = b|X1 . . . Xm = δ−m(p)) if δ(p, b) = q

0 if q /∈ δ(p,A)

and such as occurrences ofW in X correspond to occurrences of a subset of letters inY . Y is therefore a

PMC.
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Proof. The proof is very similar to the one of the i.i.d. case except that the nonm-ambiguity is obviously

required to insure that allδ−m(p) are singletons.

Using this theorem, it is possible to apply all preceding methods to Markovian sequence. But the key

question is of course: is it possible to build a nonm-ambiguous pattern DFA and how ?

In Nicodeme et al. (2002), the authors explain (algorithm 6)that this can be done starting from a DFA

associated with the pattern by duplicating states until allambiguities have been removed. This, of course,

is exactly what we need to do. However in this paper, we want topropose a more explicit approach with

algorithm 1.

As suggested by Nicodeme et al. (2002), this algorithm simply duplicates state for which it exits am-

ambiguity while preserving the DFA ability to recognize itslanguage. As only the necessary states are

duplicated, this algorithm also preserves the optimality of produced DFA.

Require: A = (A,Q, s,F , δ) is a(m − 1)-unambiguous DFA that recognizeW

1: INITIALIZATION :

2: Q0 = Q, ∀q ∈ Q, Dq = δ−m(q) andGq = ∆−1(q)

3: MAIN LOOP:

4: for all q ∈ Q0 do

5: while |Dq| > 1 do

6: takea = a1 . . . am ∈ Dq

7: add a new stateqa to Q

8: if q ∈ F then addqa toF

9: defineDqa
= {a} andGqa

= ∅

10: for all b ∈ A do δ(qa, b) = δ(q, b) and addqa to Gδ(q,b)

11: for all p ∈ Gq

12: if δ(p, am) = q andδ−(m−1)(p) = a1 . . . am−1 (empty condition ifm = 1) then

13: δ(p, am) = qa and addp to Gqa

14: for all p ∈ Gq, if q /∈ δ(p,A) then removeq from Gq

15: removea fromDq

Algorithm 1: Build a m-unambiguous DFA that recognizeW from a (m − 1)-unambiguous DFA (empty

condition ifm = 1) having the same property. Let us note that we still haveDq = δ−m(q) andGq = ∆−1(q)

at the end of algorithm.
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FIGURE4: Graphical representation of a renewal DFA associated withW1 = abA1aaA1ab withA = {a, b}. This DFA

have been built from the DFA of figure 1 through proposition 2.

In order to achieve nonm-ambiguity one could hence successively remove1-ambiguity, then2-ambiguity

and so on till we finally removem-ambiguity having used a total ofm applications of the algorithm 1. For

example, we can use this approach to transform the2-ambiguous DFA of figure 4 (δ−2(1) = {aa, ba}) into

the non2-ambiguous one of figure 3 by duplicating the state 1 into states 1 and 12.

2.3.2. Renewal occurrencesWe first recall that a renewal occurrence (also called non-overlap occurrences)

of a given pattern is an occurrence which does not overlap anypreviously counted occurrence. For example:

X = abababbaba contains three overlapping occurrences of aba but only two renewal ones (as the second

occurrence overlaps the first one).

Adapting pattern methods to such kind of occurrences usually requires a lot of work, but with our

approach (as already pointed by Nicodeme et al., 2002), we only need a small modification of our DFA:

Proposition 2. If (A,Q, s,F , δ) is a DFA which acceptsL = A∗W then

δ(f, a) = δ(s, a) ∀f ∈ F and ∀a ∈ A
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will transform the DFA to accept only the texts ending with a renewal (i.e. non overlapping) occurrence of

W .

Proof. This is trivial since restarting the DFA froms after each occurrence means that past is not taken

into account.

Once this transformation has been done, all previous results will hold for renewal occurrences using

our modified DFA. One should note that when doing so, the pattern self-overlapping matrix is obviously

null and hence makes compound Poisson approximations easier to use as they are only simple Poisson

approximations.

One can also extend the notion of renewal occurrences to the one ofd-renewaloccurrences for which we

have to waitd steps after a given occurrence to accept another one (thus, renewal occurrences and0-renewal

ones are exactly the same). In order to considerd-renewal occurrences of a patternW we simply need to

count renewal occurrences ofWAd.

3. Using PMC

3.1. Exact distribution

DFA have been used by Nicodeme et al. (2002) and Crochemore and Stefanov (2003) to obtain moment-

generating functions of the number of occurrence of any pattern in a random sequence. With the help

of efficient numerical algorithms (e. g. fast Taylor expansion), it is hence possible compute moments or

p-values. However, the computational cost of the generating function itself could be important and, as a

consequence, more straightforward approaches (like direct moment computations) are often more efficient.

In this part, we consider precisely such a more direct approach by showing how we can use PMC to

compute efficiently exact p-values. Our approach consists first to produce through PMC an optimal Markov

chain embedding of the problem and then to use recurrence relation exploiting the sparse structure of the

transition matrix to perform the computations.

The technique of Markov chain embedding (also called finite Markov chain imbedding – FMCI) have

been used for pattern problem by many authors Fu and Koutras (1994); Lou (1996); Fu and Lou (2003). If

many embedded Markov chain can be build for a given problem, the design of a space efficient one is of

course of critical interest for practical applications. Wepropose here to solve this problem by showing the

very simple connexion that exists between PMC and FMCI.
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Let W be a pattern and(A,Q, s,F , δ) an associated (smallest or not) DFA. We denote byY the corre-

sponding PMC which transition matrix is denotedΠ = P + Q whereQ contains all transitions toward final

states andP the regular ones.

Definition 3. For anyc ∈ N we define the FMCIZ by

Zj =





(Yj , Nj) if Nj < c

f if Nj > c

whereNj is the number of pattern occurrences inX1 . . . Xj .

Proposition 3. Ordering thecL + 1 of states ofZ as {(1, 0), . . . , (L, 0), (1, 1), . . . , (L, 1), . . . , (1, c −

1), . . . , (L, c − 1), f}, the corresponding transition matrix is given by

Π =


 R v

0 1




whereR (dimensioncL × cL) andv (dimensionscL × 1) are defined by blocks of sizeL:

Ri,j =






P if i = j

Q if i + 1 = j

0 else

and vi ≡ 0 for 1 6 i < c andvc = ΣQ

whereΣQ is the column vector resulting of the sum ofQ.

Proof. Obvious since transitions inP will not increment the number of occurrences while transitions in

Q will increment it by one.

Example 2. For example ifc = 2 we get the following transition matrix:

Π =




P Q 0

0 P ΣQ

0 0 1




As proposed in Nuel (2006a) it is hence possible to get the p-values we are looking for, through efficient

recurrence relations:

Theorem 4. For all n > 1 and1 6 i 6 k we have

P(Nn < c|X1 = i) =
(
un−1

)
i

and P(Nn > c|X1 = i) =

n−2∑

j=0

(
vj

)
i
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method memory complexity time complexity

exact k × L + Nobs× L k × L × Nobs× n

Gaussian k × L + F × L k × L + F × L × log n + F 2

binomial/Poisson k × L k × L + F + log Nobs

geometric Poisson k × L + F 2 k × L + F 2 + Nobs

compound Poisson k × L + F 2 + Nobs k × L + F 2 + N2
obs

large deviations k × L k × L

TABLE 2: Order of magnitude of memory and time complexities for thedifferent statistical approaches.k is the alphabet

size,L is the number of states of the associated DFA,F the number of final states,n the sequence length andNobs the

observed number of occurrences.

where( )i denotes theith component of a vector, where forx = u or v we have∀j > 0 the following sizeL

block decomposition:xj =
(
xj

(c−1), . . . , x
j
0

)′

and we have the recurrence relations:

xj+1
0 = Pxj

0 and ∀i > 1 xj+1
i = Pxj

i + Qxj
i−1

with u0 = (1 . . . 1)′ andv0 = v.

3.2. Asymptotic approximations

Thanks to Markov embedding, it is possible to obtain very efficiently the exact distribution of a pattern

count. However, the complexity involved in this computation is linear with the sequence lengthn and the

numberNobs of observed occurrences (see table 2). In many practical situations, this complexity cost may

be prohibitive thus justifying the development of faster approximations. A review of such approximations

and the practical means to their efficient implementation isproposed in Nuel (2006c).

Table 2 summarize the time and memory complexities for all these approaches. Let us fist point out the

alphabet sizek and the cardinalL of the PMC state space are critical parameters for all the method since

k × L, the number of non-zero terms in the transition matrix of thePMC, is the complexity of a sparse

product of this matrix with a vector.

Unlike with the exact approach we have to assume both homogeneity and ergodicity of the underlying

sequence Markov model in order to get these approximations.It is then possible to computing exact first

and second order moments of the pattern count with a constantcomplexity withNobs and only a logarithm

complexity withn thus resulting in a dramatically improvement over the Markov embedding approach. One

should however note that the numberF of final states appears both in memory and time complexity in a
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linear or quadratic form.

As Binomial and Poisson approximations only require first order moments, the resulting complexities

of both these methods are even reduced. The lengthn of the sequence completely vanishes from the

time complexity. Thanks to incomplete beta (binomial) or incomplete gamma (Poisson) functions, it hence

possible to compute approximate p-values with alog(Nobs) complexity.

If we turn now to compound Poisson approximations, the complexity O(F 2) both in time and space is

required to study the overlapping structure of the pattern.In general, the resulting computation of p-values

then require a quadratic complexity withNobs (which can be a prohibitive cost for frequent patterns) but in

the particular case when the compound Poisson is reduced to asimple geometric Poisson the complexity is

only linear withNobs thanks to the recurrence formulas given in Nuel (2006b).

Finally, large deviation approximations display the smallest complexities as then only rely on sparse

products to solve eigen problems related to the transition matrix of the PMC (which can be done efficiently

with Arnoldi class algorithm, see Lehoucq et al., 1998). It is however necessary to emphasize that in practice,

the large deviations approaches are slower than other approximations (but also more reliable for exceptional

patterns).

4. Applications

We propose in this part to illustrate the interest of PMC through two examples of highly degenerated

biological patterns.

4.1. Structured motifs

We consider here an important class of DNA patterns (i. e. over the alphabetA = {a,c,g,t}) occurring

in the regulatory regions of genes (Marsan and Sagot, 2000).These patterns consist in a sequence of two

or more strings each occurrences of which are separated by a specific number of letters. For example, the

structured patternttgacaA16:18tataata is composed by two strings separated by at least16 and at most

18 letters.

Robin et al. (2002) gave first a Poisson approximation to the problem, and more recently, Stefanov

et al. (2006) proposed exact methods to compute the exact distribution of this kind of patterns. In order

to demonstrate the efficiency of our new PMC approach, we consider here the same dataset used in both

(kindly provided by the authors).

This dataset is composed of a set of 131 sequence of length 100located in the upstream region of 131
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genes of the bacteriumB. Subtilis. We also consider a set of 71 structured motifs which are goodpromoter

candidates. These motifs are all of the formw1A
d1:d2w2 wherew1, w2 are two strings andd1 6 d2 two

integers.

For technical considerations, Stefanov et al. (2006) exclude occurrences of the structured motif where

w1 of w2 occur more than once (for example in segmentAd1:d2). As explained by the authors, this slightly

differs from the usual definition but the two countings (either usual structured motifs or restricted ones) are

obviously closely related.

Assuming that the 131 (the number of 130 sequences should have been misspelled in Stefanov et al.

(2006) as the dataset contains indeed 131 sequences and as the authors use then subsequently this latter value

for all their binomial computations) sequences are generated according to an homogeneous Markov model

which parameter are estimated on the dataset, we consider the random variables(Ni)16i6131 (resp. N ′
i )

count the number of occurrences of the pattern (resp. restricted pattern defined above) in theith sequence.

We hence considerN =
∑131

i=1 Ni andM =
∑131

i=1 INi>1 (as well as there restricted versionsN ′ andM ′).

The table 3 list the15 most significant structured motifs among the71 that have been tested. The column

Ps(M
′ > obs) is exactly the last column of table 5 in Stefanov et al. (2006)except for two structured motifs

which number of occurrences have been somehow miscounted bythe authors (ttgacaA16:18atataat –

resp.gttgacaA16:18tataata – appears in the sequences rpmH, TrnS and veG – resp. rpmH and f82129

– but is only observed twice – resp. once – according to Stefanov et al., 2006).

As M andM ′ are different countings, this is not a surprise to see differences between columns 4 and 5

of table 3, but as expected, these differences are small.

Our new method also allows us to consider the sum of countsN rather that the number of sequencesM

where the motif is present. In the particular case of the patterns considered in our example, there is not much

differences between the two statistics. However, differences should be more important when considering

either smaller patterns or longer sequences. For example, the patternW = atat appear in88 sequences

of the dataset but its total number of occurrences is111; the corresponding p-values areP(M > 88) =

1.66 × 10−2 andP(N > 111) = 3.50 × 10−4.

Even if the cardinality of each of these structured motifs|W| = 416 + 417 + 418 = 90 194 313 216 ≃

9 × 1010 is huge, we can see that the size of the smallest associated DFA is far smaller with an order of

magnitude of a thousand. This of course allows our PMC approach to be very efficient both in term of

memory usage and running time. For example, computing the 71p-values of the typePs(M > obs) require

a total of 25 seconds on a Intel 2.6 GHz P4 workstation while the computations ofPs(M
′ > obs) with the
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W L(F ) obs Ps(M
′ > obs) Ps(M > obs) P(M > obs) P(N > obs)

ttgacttA16:18ataataa 2571(80) 3 5.77 × 10−10 7.10 × 10−10 7.08 × 10−10 7.53 × 10−10

ttgacaA16:18atataat 1527(55) 3 na 9.45 × 10−9 9.43 × 10−6 9.60 × 10−9

tgacttA16:18ataataa 2386(80) 3 1.00 × 10−8 1.29 × 10−8 1.29 × 10−8 1.33 × 10−8

gttgacaA16:18tataata 1014(28) 2 na 1.50 × 10−7 1.50 × 10−7 1.51 × 10−7

ttgacttA16:18atactaa 2551(60) 2 1.37 × 10−7 1.52 × 10−7 1.52 × 10−7 1.53 × 10−7

tgacttA16:18atactaa 2366(60) 2 9.18 × 10−7 1.05 × 10−6 1.05 × 10−6 1.06 × 10−6

ttgacaA16:18tataatg 1399(34) 2 2.18 × 10−6 2.50 × 10−6 2.50 × 10−6 2.51 × 10−6

ttgacaA16:18tatatta 1435(43) 2 4.75 × 10−6 5.48 × 10−6 5.47 × 10−6 5.50 × 10−6

ttgactA16:18tatact 2537(106) 2 4.81 × 10−6 5.71 × 10−6 5.71 × 10−6 5.75 × 10−6

ttgacaA16:18tataata 1408(43) 2 5.23 × 10−6 6.93 × 10−6 6.92 × 10−6 7.02 × 10−6

tgactttA16:18taataa 1505(55) 2 1.12 × 10−5 1.30 × 10−5 1.30 × 10−5 1.30 × 10−5

gactttA16:18taataa 1386(55) 2 9.52 × 10−5 1.08 × 10−4 1.08 × 10−4 1.08 × 10−4

gttgacaA16:18atataat 1066(35) 1 5.63 × 10−4 6.10 × 10−4 6.10 × 10−4 6.10 × 10−4

ttgacacA16:18ataataa 979(28) 1 6.39 × 10−4 6.99 × 10−4 6.98 × 10−4 6.98 × 10−4

gttgacA16:18ctataat 1392(43) 1 6.39 × 10−4 6.84 × 10−4 6.84 × 10−4 6.84 × 10−4

TABLE 3: The15 most significant structured motifs.W indicates the motif,L (resp.F ) the number of states (resp. final

states) of the smallest non 1-ambiguous associated DFA, obsis the number of observed occurrences in the dataset and

the subscripts means that the probability is computed assuming stationarity.

previous method took 3277 seconds on a IBM F80 computer. Our approach is hence more than 100 times

faster than the previous one which is a dramatic improvement.

It is nevertheless important to point out that the computations performed in Stefanov et al. (2006) were not

seeking for numerical performance. Moreover, Stefanov et al. (2006) consider the problem as two competing

patterns rather than a single (highly degenerated one) which results in a marginal increasement of complexity

with the gap length while the single pattern approach presented here is geometrically dependant with this

parameter.

On should note that is it possible to adapt the PMC framework to a competing pattern problem by splitting

the subset of final states intoF = F1 ∪ F2 whereF1 (resp. F2) contains the final states associated to

the patternw1 (resp. w2). If we consider then the corresponding decomposition of the transition matrix

Π = P +Q1+Q2 it is then possible to get the the distribution of a structured pattern in a very straightforward
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way:

P(w1A
dw2 starts ini) = µmP i−m

︸ ︷︷ ︸
up toi

×P |w1|−2Q1︸ ︷︷ ︸
w1

× P d

︸︷︷︸
gap

×P |w2|−1Q2︸ ︷︷ ︸
w2

×eT
F2

If we consider for examplew1 = ttgaca, w2 = atataat and16 6 d 6 18, the smallest1-unambiguous

DFA that allows to count bothw1 andw2 hasL = 16 states (while the DFA associated to the full structured

motif hasL = 1527 states) we get

P(w1A
16:18w2) ≃

17∑

d=16

100∑

i=1

P(w1A
dw2 starts ini) = 3.06 × 10−5

which is very close to the exact solution (3.02×10−5 in Stefanov et al., 2006) despite the fact that important

dependencies are not here taken into account.

This alternative approach obviously need more work to deal rigorously with the problem but seems

already appealing since it combines the interest of the existing method and of the new one. Indeed most

of the complex combinatorial aspects of the problem are embedded in the PMC (which state space is greatly

reduced) and, like in Stefanov et al. (2006), dealing with larger gaps is not a problem.

Finally, let us add that our PMC approach to structured motifs have several natural extensions which are

likely to be difficult to get with previous approaches:

• structured motifs with degenerated patterns (possibly of variable lengths) instead of simple words;

• structured motifs with more than two patterns;

• heterogeneous background models.

In order to illustrate this last point, we propose to consider the following heterogeneous Markov model

overA = {a,c,g,t}: the starting distributionµ1 (MLE estimate using the dataset) is given by:

µ1 =

(
50

131

17

131

23

131

41

131

)

and the heterogeneous (and arbitrary) transition matrix by:

πi(a, b) = P(Xi = b|Xi−1 = a) =
(100 − i)

98
π0 +

(i − 2)

98
π1 ∀a, b ∈ A, ∀2 6 i 6 100

where

π0 =




0.5 0.1 0.1 0.3

0.2 0.2 0.3 0.4

0.4 0.3 0.2 0.1

0.3 0.2 0.3 0.2




and π1 =




0.1 0.4 0.4 0.1

0.4 0.3 0.1 0.2

0.6 0.2 0.1 0.1

0.3 0.2 0.1 0.4




.
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m 0 1 2 3

L 329 1 393 10 688 134 746

F 30 78 633 3 045

TABLE 4: Characteristics of the smallest nonm-ambiguous DFA associated to the cyclic nucleotide-binding domain

signature 2 (PS00889): [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]-A-x-[LIVMA]-x-[STACV] (cardinality ≃

1022). L denotes the number of states andF the number of final states.

Using the PMC framework, it is then easy to compute the exact probability to observe at least one

occurrence of a structured pattern in a random sequence drawn either according to an homogeneous model

or according to the heterogeneous one defined above:

P(N(ttgacttA16:18ataataa) > 1) =






6.863712× 10−6 with the homogeneous transitionsπ0

8.795492× 10−8 with the homogeneous transitionsπ1

1.549870× 10−6 with the heterogeneous transitions

4.2. PROSITE signatures

Another interesting family of biological patterns are the signatures of the PROSITE database Hulo et al.

(2006). This database contains protein consensus patternsfor many of functional families. As protein

are simple sequences of amino-acids (sizek = 20 alphabet), the PROSITE signatures are often highly

degenerated.

For example, the cyclic nucleotide-binding domain signature 2 (PS00889 entry of the PROSITE database)

is: [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]-A-x- [LIVMA]-x-[STACV] (“x” means “any amino-

acid”, “[GAS]” means “any of those inside the brackets” and “x(5,11)” is a gap of length between5 and11).

The cardinality of this pattern is1022 which is huge but we can see on table 4 that the characteristics of the

smallest associatedm-unambiguous DFA are far smaller. Of course the number of states grows quickly with

m but fortunately, protein sequences are usually modelized with low order Markov chains (m 6 2).

We consider now the1 332 signatures of the PROSITE database (release 19.23) and a dataset consisting

of 280 proteins from the SWISS-PROT database Gasteiger et al. (2001) which belongs to the transmembrane

type (according to their annotations) with a total length of84 192 amino-acids. We use the dataset to estimate

an independent homogeneous model (orderm = 0 Markov model) and want to point out significant over-

represented PROSITE signatures in our transmembrane sequences.

The27 signatures which appear at least one time in the transmembrane dataset are listed in table 5. For

example, we can see that the signature PS00007 (Tyrosine kinase phosphorylation site) appears 102 times
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in the dataset but that the corresponding p-value (0.48) is unsignificant. The signature definition is [RK]-

x(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y which gives a cardinality of 25.6 millions, but the number of

states (resp. final states) of the smallest unambiguous associated DFA is onlyL = 72 (resp.F = 19). The

computational time is also given in the table and we can see that it highly depends on the combinatorial

complexity of the considered signature ranging from a couple of seconds for the simplest ones to more than

one hour for the most complicated one.

In the paper Nicodeme et al. (2002), the author used a DFA approach to compute exact order one and

two moments through formal computations and generating functions in the independent case. Using the

extension of their method we presented here, we are able to domuch more with a dramatic improvement in

terms of efficiency.

Two significant signatures are especially interesting because they have a high number of occurrences

in the dataset: PS00008 and PS00294. The first one is annotated in the PROSITE database as a N-

myristoylation site and the second one as a Prenyl group binding site. It could be interesting to further

investigate the biological relevance of this site for transmembrane proteins.

5. Conclusion

In this paper, we push forward the idea of using DFA to producemoment generating functions of pattern

random occurrences to the next level. By introducing the formal notion of PMC (proposed along with

explicit construction algorithms), we provide an optimal way to perform Markov chain embedding for a

wide range of pattern problem.

In order to illustrate the usefulness of the notion of PMC, weexplain in detail how we can use it

to compute the exact distribution of a pattern using only basic sparse linear algebra and straightforward

recurrences. We also compare the numerical complexity of this approach to those of various classical

asymptotic approximations (Gaussian, binomial, Poisson and large deviation) for which the PMC framework

bring both effectiveness and simplicity.

We finally consider practical applications of these resultsby considering two examples of highly degener-

ated pattern problem. The first one concerns structured motifs which distributions have already been studied

by Robin et al. (2002); Stefanov et al. (2006).

Despite the fact that our general approach does not considerthe problem from the competing patterns

point of view (like the previous approaches do), it is nevertheless able to perform the computation up to 100
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ID L F Nobs P(N > Nobs) time (s)

PS01243 1656 10 2 6.6 × 10−14 48.4

PS01270 270 2 1 5.8 × 10−11 3.4

PS00556 50 1 2 7.5 × 10−11 1.4

PS01114 12 1 2 9.5 × 10−11 0.4

PS01188 14 1 2 1.3 × 10−9 0.3

PS01218 261 2 2 2.5 × 10−8 6.4

PS01133 8840 136 1 3.0 × 10−8 168.0

PS01214 11 1 1 3.4 × 10−6 0.2

PS01246 1332 40 1 3.4 × 10−6 20.3

PS00008 64 32 1141 4.9 × 10−6 1961.6

PS00294 9 3 387 3.2 × 10−5 56.5

PS01221 427 14 1 1.5 × 10−4 4.9

PS00004 7 2 129 1.8 × 10−4 12.3

PS01128 2587 63 1 9.0 × 10−4 44.9

PS01309 59 2 1 1.1 × 10−3 0.7

PS00006 12 4 1034 8.1 × 10−3 406.5

PS00016 4 1 16 2.9 × 10−2 1.1

PS00009 5 1 53 5.7 × 10−2 4.6

PS00217 1152 40 1 6.7 × 10−2 14.2

PS00133 40 3 1 1.1 × 10−1 0.6

PS00007 72 19 102 1.4 × 10−1 104.6

PS00001 9 3 398 3.6 × 10−1 58.8

PS00029 20480 4096 15 4.8 × 10−1 5173.3

PS00430 17 2 1 7.4 × 10−1 0.2

PS00017 60 4 2 9.2 × 10−1 1.5

PS00005 6 2 955 9.4 × 10−1 240.2

PS00342 5 2 1073 1.0 × 10−0 548.8

TABLE 5: The27 PROSITE signatures (out of1, 332) that appear at least once in the transmembrane dataset. These

signatures are ordered by increasing exact p-values computed in reference with an orderm = 0 Markov model which

parameters are estimated on the dataset.L (resp.F ) is the number of states (resp. of final states) of the smallest DFA

that recognize the pattern.Nobs is the number of observed occurrence in the transmembrane dataset andP(N > Nobs)

is the p-value of the observation. The indicated time is the overall running time to build the DFA, count the occurrences

and perform the exact p-value computation using a Intel 2.6 GHz P4 workstation. A significance threshold of3.8×10−5

(5% threshold with Bonferroni correction) is represented by a solid line.
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times faster than the previous (but not optimized) ones. It is however clear that this approach will not be

able to deal with longer gaps without a significant additional computational effort. The counterpart of this

drawback is a more flexible method allowing for example to take into account several occurrences in the

same sequence or to consider heterogeneous models.

Like in Nicodeme et al. (2002) we also considered the signature from the PROSITE database. As these

signature are often built from poorly conserved protein sequences, many of them present high combinatorial

complexity. As a consequence,12% of the PROSITE patterns considered by Nicodeme et al. (2002)was not

tractable, the largest automaton successfully processed having 946 states. In the present study however, our

more straightforward Markov chain embedding approach allows us to treat all signatures with our largest

automaton having 20 480 states which dramatically outperform the previous method.

Finally, let us add that all these results are already implemented in the Statistic for Patterns package

(SPatt, freely available athttp://stat.genopole.cnrs.fr/spatt).
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