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Abstract

In the framework of pattern in random texts, the Markov cheximbedding techniques
consist to turn the occurrences of a pattern over an orddvlarkov sequence into
those of a subset of states into an ordekarkov chain. In this paper, we use the
theory of language and automata to provide space optimakdachain embedding
through the new notion of Pattern Markov Chain (PMC) an gixplieit constructive
algorithms to build the PMC associated to any given patteoblpm. The interest of
PMC is then illustrated through the exact computation oajues which complexity
is discussed and compared to other classical asymptotio@pgations. Finally, we
consider two illustrative examples of highly degeneratattggn problems (structured
motifs and PROSITE signature) which further illustrate tisefulness of our approach.
Keywordsilanguage; regular expression; exact distribution; stmact motifs; PROSITE
signatures
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Secondary

1. Introduction

The theory concerning pattern and motif occurrence in ramdtrings has been of interest since 1950s.
Computational molecular biology has been a major area oliGgijn of this theory since late 1980s. A
variety of methods have been suggested in the literaturedating exact distribution properties associated
with pattern occurrence. For example, combinatorial argsital probabilistic methods have been used

in Guibas and Odlyzko (1981); Chryssaphinou and Papadta\i990); Robin and Daudin (1999, 2001);
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Stefanov (2003), Markov chain embeddings - in Fu (1996);djibanstantinidis et al. (2000); Antzoulakos

(2001); Fu and Chang (2002), Markov renewal embeddings idgiBs and Cannings (1987), exponential
families with either Markov chain or Markov renewal embetgs - in Stefanov and Pakes (1997, 1999);
Stefanov (2000) , and martingale techniques - in Li (19809z&t al. (2006).

An overview of some of these methods has been provided byeReaihal. (2000). None of the available
methods is uniformly superior as far as computation of @h\distributions is concerned. Furthermore,
it has been noticed that the computational effort is sultistisior any of the available methods when the
pattern cardinality (number of string the pattern contpberomes relatively large.

Inspiring from pattern matching theory, Nicodeme et al.Q2ffirst proposed to overcome this problem
using Deterministic Finite Automata (DFA) in order to get ment generating function of pattern counts
through the Chomsky and Schiitzenberger algorithm. A vemia approach using exponential families
have also been proposed by Crochemore and Stefanov (2003).

The purpose of this paper is to push forward the connexiomdsen patterns and automata by introducing
an optimal Markov chain embedding through the notion ofdatMarkov Chains (section 2). We then
illustrate how this new tool can be used to perform efficietgat and approximate pattern computations
(section 3) and the paper ends with two highly degeneratdddical patterns applications where our method

proves its practical usefulness (section 4).

2. Pattern Markov Chains

2.1. Automata and languages

In this part we first introduce some classical definitions mstlts of the well known theory of languages
and automata Hopcroft et al. (2001).

We considetd = {a4, ..., a;} afinite alphabewhich elements are callddtters A word (or sequence
over A is a sequence of letters antbamguageover A is a set of words. We denote bytheempty word For
example abbaba is a word over the binary alphabet {a b} and£ = {ab abbababbbbh is a language
overA.

TheproductL; - £, (the dot could be omitted) of two languages is the langyagevs, wy € L1, w2 €
Lo} (wherew; w, is the concatenation — or product —of andw,. If £is alanguagef™ = {w; ... w, with
wi,...w, € L} and thestar closureof L is defined byL* = U,>0L™. The languaged* is hence the

set of all possible words oved. For example we havéab} - {abbababbbbl} = {ababbabzabbbbbb;
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FIGURE 1: Graphical representation of the DRA, Q, s, F,¢) with A = {a b}, @ = {0,1,2,...,10,11}, s = 0,
F = {11} andé(0,a) = 1,5(0,b) = 0,d(1,a) = 1,4(1,b) = 2,46(2,a) = 3, 5(2,b) =4, 5(3,a) = 5,4(3,b) =1,
0(4,a) = 5,6(4,b) = 0,46(5,a) = 6,(5,b) = 2,4(6,a = 7,(6,b) =8,5(7,8 =9,(7,b) =2, (8,8 = 10,
5(8,b) =4,06(9,a) =1,d(9,b) = 11, §(10,a) = 5, §(10,b) = 11, §(11,a) = 3 andd(11,b) = 4. This DFA is the
smallest one that recognize the langudge: AWW: with A = {a b}, Wi = ahA'aad'ab and hencV: | = 4.

{ab}® = {ababab and{ab}* = {¢,ah abab...}
A regular languagss either the empty word, or a single letter, or obtained bipnnproduct and star

closure of regular languaged* is regular. Any finite language is regular.

Definition 1. If A a finite alphabetQ a finite set of states;, € Q a starting stateF C Q a subset of final
states and : Q x A — Q a transition function thefA, Q, s, 7, §) is a Deterministic Finite Automaton
(DFA). Foralla = a; ...aq_1aq € A% (d > 2) andq € Q we recursively definé(q, a; ...aq_1aq) =

§(8(q, a1 ...aq-1),aq). Awordw € A" is isacceptedor recognizedlby the DFA if §(s,w) € F. The set

of all words accepted by a DFA is called its language. See amdif) a graphical representation of a DFA.

We can now give the most important result of this part whicla isimple application of the classical

Kleene and Rabin & Scott theorems Hopcroft et al. (2001):

Theorem 1. For any rational languageC there exists a unique (up to a unique isomorphism) smallést D

which language i<.



4 G. Nuel

k 1 2 3 4 5) 6 7 8 9 10 11
Wil | 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304
L |12 27 57 122 262 562 1207 23592 5567 11957 25682
F 1 3 6 13 28 60 129 277 995 1278 2745

TABLE 1: Characteristics of the smallest DFA that recognizes éinguagel = AW, with A = {a b} andW;, =
ahA*aad*ab. The pattern cardinality i3V | = 2% x 2% = 4%, L is the total number of states adthe number of

final states.
2.2. Connexion with patterns

We callpatternover the finite alphabetl any finite language over the same alphabet such as no element
is included into another one (this last condition is usedrgpéify many definitions and results by avoiding
degenerated cases). For any patté/rany DFA that recognizes the regular languajg/V is said to be
associatedvith /. According to theorem 1, there exists a unique (up to unigamprphism) smallest DFA
associated with a given pattern.

For example, if we work with the binary alphahét= {a b} then the smallest DFA associated with the
pattern/V; = abA'aad'ab hasl = 12 states and” = 1 final state. A graphical representation of this DFA
is given in figure 1.

It is well known from the pattern matching theory Cormen e{&990); Crochemore and Hancart (1997)
that such a DFA provides a simple way to find all occurrencés@torresponding pattern in a sequence. In
the following, we will see how to exploit this remarkable pesty to study the distribution of patterns.

One should not that in the special case where our pattermicsnly one word there is an easy way to

build its smallest associated DFA:

Proposition 1. If W = {w = w; ... w, } a single word of lengtl then its smallest associated DFA is of
sizel = h + 1 and defined by = {&, w1, wiws, ..., w} the set of all prefixes af, s = ¢, F = {w} and
forall ¢ € Q anda € A, d(q,a) is simply defined as the longest suffixef(concatenation of anda) in

Q.

In the case of a general pattern, a similar method can prodnaessociated DFA (consider f@ the
union of all pattern prefixes) but it would not necessary leesimallest one. In order to be more efficient in

the DFA design, one should use instead the classical anckn@ivn algorithms provided by the theory of
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FIGURE 2: Graphical representation of the smallest DFA associai#i)V, = abhA%aad?ab. This DFA had, = 27
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states including” = 3 final states.
languages and automata (regular expression to FSA, detieation and epsilon removal).

For example, let us consider the pattgth = ah4*aad*ab (¢ > 1) over the binary alphabet = {a b}.
Table 1 shows that the number of final states is (often draal$t) smaller than the cardinal of the pattern.
Wi is recognized by the DFA of figure ¥, by the one of figure 2 anélV;;, a pattern with a cardinal of
several millions, is recognized by a DFA having only a fewubands states.

Assuming from now that a DFA (smallest or not) associateth witr pattern has been built, we can give

the main result of this part:

Theorem 2. if X = X;X,...X;...is aiid. sequence omd, W a pattern and(A4, Q,s,F,d) an
associated DFA then sequence= Y,Y1Ys ... Y; defined by

Yo=s and Y;=0(Y;_1,X;) forall i>1

is an orderl Markov chain which transition matrix is given by

P(Xy=a) ifd(p,a)=gq
0 if g & 6(p, A)

and such as occurrences¥f in X correspond to occurrences of a subset of lettef¥ ifhereF). A Markov

(p, q) =

chain having these properties is calledPattern Markov ChaiPMC). Moreover, if the DFA is optimal (i.e.
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has the smallest number of states) then the resulting PMGheesame property.

Proof. By definition, the sequenceg is obviously an ordet Markov chain. Moreover, if an occurrence
of YW ends at positionin X, the sequencd ... X, ends with an occurrence of the pattern and is therefore
an element ofA*W and thus is accepted by the DFA which means #jae F and the first part of the

theorem is proved.

Let us now assume that it exists a skta subsefx C Q and a functiorG : A* — Q* such as:

i) Vo e A* we denotey = G(x); V0 < i < |z|, W ends in position in z < y; € F;

ii) if X isi.i.d.thenY = G(X) is an order 1 Markov chain.

Forallz € A* anda € A we denote byA(z,a) the state in positionzal in f(xza) and we define
recursively the functiols : A* — Q* by G(e) = G(e) andG(za) = G(x)A(x,a) Va € A,z € A*. We
define nowA (G(x), a) = A(z, a) on the quotient spaded* ) wherezRz' = G(z) = G().

Thanks to (i), it existsy : Q x A — Q such asA(yq,a) = d(¢,a) for all yg € G(A*) anda € A.

Hence(A, Q,s = G(e)o, F, ) is a DFA associated withy and the second part of the theorem is proved.

One should note that the transition matrix of a PMC is spamsly ¢ x L non zero terms among?, where
k is the alphabet size) and that we have a natural decompositithis transition matrix intdl = P + Q

where(@ contains all transitions toward counting states &hithe regular ones.

Example 1. Let us consider the pattetd; = ahA'aad'ab over the binary alphabet = {a b}. Its
smallest associated DFA is represented on figure X i$ the original sequence, we build the PMCas

follows (final states in bold):

X= —-— a b aaabbaawawa b b aab a b awb

Y= 012 3 5 6 8 45 6 7 9 11 4 5 6 8 10 11 3 2

We see two occurrences d¥;: one ending in position 12 (abbaaaab) and one in positiorahBgabab,
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overlapping the previous occurrence). The transition ixafrY” is given by

mw pa 0 0O 0O 0O 0O 0O 0O 0 0 O
0O pa o 0 O O O O O O 0 O
0 0 0 pa mw O O O O 0O 0 O
0 0 m O pua O 0 0 0O 0 0 O
mw O 0 0O 0O pw O O O 0 0 O
0 0 m 0 O O pw O O 0O 0 O
I=( 0 0 0 0 0 0 0 pa w O 0 O
0 0 m 0 0 0 0 0O 0 pg 0 O
O 0 0 0 0 0 0 0 0 0 0 O
00 0 0 wm 0 0 0 0 0 pa O
0O ga 0O 0 0 0 0 0 0O 0O 0 u
00 0 0 0 e O 0 0 0 0 u
0 0 0 pa mw O O O O 0O 0 O

where transitions withi belong toQ and withy. = P(X; = ).

As explained in the introduction, the authors of Nicodemale{2002) proposed to use pattern’s DFA
to get the pattern generating function through the ChomsiScRutzenberger algorithm and derive from it
exact results and asymptotic moments. More recently, Giochie and Stefanov (2003) used the pattern’s
automaton conjointly with exponential families resultglie same aim. Instead of focusing of generating
function only (as done in these papers), we propose here a si@ightforward and practical approach

consisting to exploit our new PMC to improve a wide range abslcal pattern methods.

2.3. Extensions

The methods we have presented until now are only valid forlapping occurrences of a pattern in a

i.i.d. sequence. We propose here to extend our results tekdMaequences or to renewal occurrences.

2.3.1. Markov chainsIn order to extend our results to Markov chain sequences, isenféed to introduce

the following definition

Definition 2. A DFA (A, Q, F,s,d) where it exists; € Q anda,b € A™ such asu # b andd(q,a) =

(g, b) is calledm-ambiguousA DFA which is notm-ambiguous is also called-unambiguous
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FIGURE 3: Graphical representation of the smallest non 2-ambiguEA associated with; = ahA'aad'ab with
A = {a b}. This DFA have been built from the DFA of figure 1 through algon 1.

Please note that the-ambiguity presented here is different from the classicaiam of ambiguityfor DFA
(meaning that it exists two different path to recognize thims language element).
Forany DFA(A, Q, s, F, ) we define for ally € Q and for allm > 1 the following notations:
57™(q)={ac A", 3pe Q,8(p,a) =q} and A7'(q)={p€ Q Jac A d(p.a)=q}
Hence, such a DFA isi-unambiguous if alb =" (q) are singletons.
Theorem 3. if X = X; ... X,, isanorderm > 1 Markov sequence ad, WV a pattern and A, Q, s, F, §)
a nonm-ambiguous DFA which language.i$ )V then the sequencé =Y, ... Y,, defined by
Yo=s and Y;=46(Y;—1,X;) forall 1<i<n
is an order 1 Markov chain which transition matrix is given by
P( X1 =0X1... X, =67 (p)) ifdo(p,b)=g¢q
0 if g & d(p, A)
and such as occurrences @ in X correspond to occurrences of a subset of letter¥inY” is therefore a

PMC.

(p, q) =
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Proof. The proofis very similar to the one of the i.i.d. case exchpt the nonm-ambiguity is obviously

required to insure that all=™(p) are singletons.

Using this theorem, it is possible to apply all precedinghmes to Markovian sequence. But the key
question is of course: is it possible to build a nerambiguous pattern DFA and how ?

In Nicodeme et al. (2002), the authors explain (algorithnth@ this can be done starting from a DFA
associated with the pattern by duplicating states untidadbiguities have been removed. This, of course,
is exactly what we need to do. However in this paper, we waprépose a more explicit approach with
algorithm 1.

As suggested by Nicodeme et al. (2002), this algorithm gindplplicates state for which it exitssa-
ambiguity while preserving the DFA ability to recognize isguage. As only the necessary states are

duplicated, this algorithm also preserves the optimalitgroduced DFA.

Require: A = (A, Q,s,F,0)is a(m — 1)-unambiguous DFA that recogniz®
1: INITIALIZATION :
2. Qy=09,Vge Q,D, =6 (q) andG, = A7!(q)
3: MAIN LOOFP:

4: forall ¢ € Qo do

5:  while |D,| > 1do

6: takea = a1 ...am € Dy
7 add a new state, to O

8: if ¢ € F then addy, to F

9: defineD,, = {a} andg,, =0
10: forallb € A doé(qa,b) = d(g, b) and addy, to Gs(y.p)

11: forallp € G,

12: if 6(p,am) =q andd*(mfl)(p) =aj...an—1 (empty condition ifm = 1) then
13: d(p, am) = g, and addp to G,

14: forallp € G, if ¢ ¢ d(p,.A) then remove from G,

15: removea from D,

Algorithm 1: Build am-unambiguous DFA that recogniz® from a(m — 1)-unambiguous DFA (empty
condition ifm = 1) having the same property. Let us note that we still Haye= 6—™(¢) andGg, = A~(q)

at the end of algorithm.
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FIGURE 4: Graphical representation of a renewal DFA associateld Wit = ahA'aad’ab with A = {a, b}. This DFA
have been built from the DFA of figure 1 through proposition 2.

In order to achieve nom-ambiguity one could hence successively rembanbiguity, ther2-ambiguity
and so on till we finally remove:-ambiguity having used a total ef applications of the algorithm 1. For
example, we can use this approach to transforn2thenbiguous DFA of figure 45( 2(1) = {aa ba}) into

the non2-ambiguous one of figure 3 by duplicating the state 1 inteestatand 12.

2.3.2. Renewal occurrence¥Ve first recall that a renewal occurrence (also called nogrlap occurrences)
of a given pattern is an occurrence which does not overlapasyiously counted occurrence. For example:
X = abababbaba contains three overlapping occurrences ofidtmaly two renewal ones (as the second
occurrence overlaps the first one).

Adapting pattern methods to such kind of occurrences usuatjuires a lot of work, but with our

approach (as already pointed by Nicodeme et al., 2002), Wenered a small modification of our DFA:

Proposition 2. If (A, Q, s, F,¢) is a DFA which accept§ = A*W then

§(f,a) =0(s,a) VfeF and Vaec A
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will transform the DFA to accept only the texts ending witreaawal (i.e. non overlapping) occurrence of

W.

Proof. This is trivial since restarting the DFA fromafter each occurrence means that past is not taken

into account.

Once this transformation has been done, all previous mesuilt hold for renewal occurrences using
our modified DFA. One should note that when doing so, the pattelf-overlapping matrix is obviously
null and hence makes compound Poisson approximationsr ¢asisse as they are only simple Poisson
approximations.

One can also extend the notion of renewal occurrences tohefl-renewaloccurrences for which we
have to waitd steps after a given occurrence to accept another one (#nesyeal occurrences aferenewal
ones are exactly the same). In order to consifiegnewal occurrences of a pattéi we simply need to

count renewal occurrences f.A°.

3. Using PMC

3.1. Exact distribution

DFA have been used by Nicodeme et al. (2002) and Crochemdr8tafanov (2003) to obtain moment-
generating functions of the number of occurrence of anyepatin a random sequence. With the help
of efficient numerical algorithmse( g. fast Taylor expansion), it is hence possible compute mosnent
p-values. However, the computational cost of the genegdtinction itself could be important and, as a
consequence, more straightforward approaches (liketdinement computations) are often more efficient.

In this part, we consider precisely such a more direct apgrd®sy showing how we can use PMC to
compute efficiently exact p-values. Our approach consististéi produce through PMC an optimal Markov
chain embedding of the problem and then to use recurrenagarlexploiting the sparse structure of the
transition matrix to perform the computations.

The technique of Markov chain embedding (also called fini@kdv chain imbedding — FMCI) have
been used for pattern problem by many authors Fu and Koute:1j; Lou (1996); Fu and Lou (2003). If
many embedded Markov chain can be build for a given problémgdesign of a space efficient one is of
course of critical interest for practical applications. YWepose here to solve this problem by showing the

very simple connexion that exists between PMC and FMCI.
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Let W be a pattern andA, Q, s, F,d) an associated (smallest or not) DFA. We denot&bthe corre-
sponding PMC which transition matrix is denotdd= P + @ where() contains all transitions toward final

states and’ the regular ones.

Definition 3. For anyc € N we define the FMCE by

(Y5, N;) ifN; <e

Z; =
f if N; > c

whereN; is the number of pattern occurrences¥n . . . X;.

Proposition 3. Ordering thecL + 1 of states ofZ as {(1,0),...,(L,0),(1,1),...,(L,1),...,(1,¢c —

1),...,(L,c—1), f}, the corresponding transition matrix is given by
R|wv
H =
011

whereR (dimensiorcL x cL) andwv (dimensiongL x 1) are defined by blocks of siZe

P ifi=j
R;; = Q ifi+l=y and v; =0forl < i < candv, =3¢
0 else

whereX, is the column vector resulting of the sumpf

Proof. Obvious since transitions i will not increment the number of occurrences while traosis in

Q@ will increment it by one.

Example 2. For example ifc = 2 we get the following transition matrix:

P Q| o0
I=| 0 P|3
0 0] 1

As proposed in Nuel (2006a) it is hence possible to get thalpes we are looking for, through efficient

recurrence relations:

Theorem 4. Forall n > 1 and1 < 7 < k we have

P(Nn < c|Xp=1i)=(u"""), and P(N, >c|X;=i)=) (v/),
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method memory complexity time complexity
exact kX L+ Nopsx L kX L X NopsX 1
Gaussian kxL+FXxL kx L+ F x L xlogn+ F?
binomial/Poisson kx L kx L4+ F +log Nops
geometric Poisson kx L+ F? kx L+ F? 4+ Nops
compound Poisson k x L + F? + Ngps kx L+ F?+ N2
large deviations kxL kx L

TABLE 2: Order of magnitude of memory and time complexities fordiferent statistical approaches.is the alphabet
size, L is the number of states of the associated DFAhe number of final states, the sequence length aid,,s the
observed number of occurrences.

where( ); denotes theé!" component of a vector, where for= v or v we havey; > 0 the following sizel,

. . N .
block decompositioni’ = (:v%c_l), . ,x%) and we have the recurrence relations:

xéJFl = Px% and Vi >1 e P:z:{ + Qa:g_l

withu® = (1...1)" andv® = v.

3.2. Asymptotic approximations

Thanks to Markov embedding, it is possible to obtain verycedfitly the exact distribution of a pattern
count. However, the complexity involved in this computatis linear with the sequence lengthand the
numberNgps Of observed occurrences (see table 2). In many practiaatsins, this complexity cost may
be prohibitive thus justifying the development of fastepagximations. A review of such approximations
and the practical means to their efficient implementatiqgragposed in Nuel (2006c).

Table 2 summarize the time and memory complexities for @¢éhapproaches. Let us fist point out the
alphabet sizé: and the cardinall of the PMC state space are critical parameters for all thénatesince
k x L, the number of non-zero terms in the transition matrix of BMC, is the complexity of a sparse
product of this matrix with a vector.

Unlike with the exact approach we have to assume both honedtyeand ergodicity of the underlying
sequence Markov model in order to get these approximatitins.then possible to computing exact first
and second order moments of the pattern count with a constamplexity with Nops and only a logarithm
complexity withn thus resulting in a dramatically improvement over the Markmbedding approach. One

should however note that the numhierof final states appears both in memory and time complexity in a
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linear or quadratic form.

As Binomial and Poisson approximations only require firstesrmoments, the resulting complexities
of both these methods are even reduced. The length the sequence completely vanishes from the
time complexity. Thanks to incomplete beta (binomial) axdamplete gamma (Poisson) functions, it hence
possible to compute approximate p-values withg( Nons) complexity.

If we turn now to compound Poisson approximations, the cexipl O(£2) both in time and space is
required to study the overlapping structure of the pattémrgeneral, the resulting computation of p-values
then require a quadratic complexity wit¥i,,s (which can be a prohibitive cost for frequent patterns) but i
the particular case when the compound Poisson is reducesitopde geometric Poisson the complexity is
only linear with Nops thanks to the recurrence formulas given in Nuel (2006b).

Finally, large deviation approximations display the smesillcomplexities as then only rely on sparse
products to solve eigen problems related to the transitiatrimnof the PMC (which can be done efficiently
with Arnoldi class algorithm, see Lehoucq et al., 1998)s lowever necessary to emphasize that in practice,
the large deviations approaches are slower than other rgippatons (but also more reliable for exceptional

patterns).

4. Applications

We propose in this part to illustrate the interest of PMC tlglo two examples of highly degenerated

biological patterns.

4.1. Structured motifs

We consider here an important class of DNA patteins.over the alphabel = {a, c, g, t }) occurring
in the regulatory regions of genes (Marsan and Sagot, 200@3se patterns consist in a sequence of two
or more strings each occurrences of which are separated pgaifis number of letters. For example, the
structured patterht gaca.A'%18t at aat a is composed by two strings separated by at leéésind at most
18 letters.

Robin et al. (2002) gave first a Poisson approximation to ttedlpm, and more recently, Stefanov
et al. (2006) proposed exact methods to compute the exaabdifon of this kind of patterns. In order
to demonstrate the efficiency of our new PMC approach, weidendere the same dataset used in both
(kindly provided by the authors).

This dataset is composed of a set of 131 sequence of lengtlod@ted in the upstream region of 131
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genes of the bacteriuB. Subtilis We also consider a set of 71 structured motifs which are gworhoter
candidates. These motifs are all of the foam A% :%2w, wherew;, w, are two strings and; < ds two
integers.

For technical considerations, Stefanov et al. (2006) eleloccurrences of the structured motif where
wy of wo occur more than once (for example in segmdAt?2). As explained by the authors, this slightly
differs from the usual definition but the two countings (eitiisual structured motifs or restricted ones) are
obviously closely related.

Assuming that the 131 (the number of 130 sequences shoull een misspelled in Stefanov et al.
(2006) as the dataset contains indeed 131 sequences awrdastibrs use then subsequently this latter value
for all their binomial computations) sequences are gerdratcording to an homogeneous Markov model
which parameter are estimated on the dataset, we consigleatidom variablesN;)1<i<i131 (resp. N))
count the number of occurrences of the pattern (resp. céstripattern defined above) in tie sequence.
We hence consideV = >°) N; andM = %! Ty~ (as well as there restricted versioN$ and M”).

The table 3 list thé 5 most significant structured motifs among thethat have been tested. The column
P,(M’ > obs) is exactly the last column of table 5 in Stefanov et al. (2@9&gpt for two structured motifs
which number of occurrences have been somehow miscountteelauthorst(t gaca.A'%'%at at aat —
resp.gt t gaca.A'%!%t at aat a — appears in the sequences rpmH, TrnS and veG — resp. rpm32h2d
— but is only observed twice — resp. once — according to Stefahal., 2006).

As M and M’ are different countings, this is not a surprise to see diffees between columns 4 and 5
of table 3, but as expected, these differences are small.

Our new method also allows us to consider the sum of colntather that the number of sequendds
where the motifis present. In the particular case of thegpastconsidered in our example, there is not much
differences between the two statistics. However, diffeesnshould be more important when considering
either smaller patterns or longer sequences. For exanf@gdtternV = at at appear ir88 sequences
of the dataset but its total number of occurrenceslis, the corresponding p-values aféM > 88) =
1.66 x 10~2 andP(N > 111) = 3.50 x 10—,

Even if the cardinality of each of these structured maifg) = 416 4+ 417 4 4% = 90194313216 ~
9 x 10'° is huge, we can see that the size of the smallest associaidsi&r smaller with an order of
magnitude of a thousand. This of course allows our PMC ambroa be very efficient both in term of
memory usage and running time. For example, computing thevélues of the typ®,(M > obg require

a total of 25 seconds on a Intel 2.6 GHz P4 workstation whitecthmputations of; (M’ > obs) with the
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)4% L(F) obsP,(M’' > obs P,(M >obs P(M >obs P(N >obg
ttgactt.A%®ataataa 2571(80) 3 5.77x 10719 7.10 x 1071° 7.08 x 10710 7.53 x 1010
ttgacaA'®18atataat 1527(55) 3 na 9.45x 107% 9.43 x 107% 9.60 x 107
tgactt . A'%8ataataa 2386(80) 3 1.00x 1078 1.29x10°% 1.29x107% 1.33x 10~8
gttgacaAl®8tataata 1014(28) 2 na 1.50 x 1077 1.50 x 10=7 1.51 x 1077
ttgactt Al%®atactaa 2551(60) 2 1.37x 1077 1.52x 1077 1.52x 1077 1.53 x 1077
tgactt A18atactaa 2366(60) 2 9.18x 1077 1.05x 107 1.05x 1076 1.06 x 10~°
ttgacaAd'®Stataatg 1399(34) 2 2.18x107% 250x10°% 250 x 1076 2.51 x 10~°
ttgacad'®Statatta 1435(43) 2 4.75x107% 548 x107% 547 x107% 5.50 x 10~°

ttgact A%18tatact 2537(106) 2 4.81x107% 571 x107% 571 x107°% 575 x 1076
ttgacaAd'®Stataata 1408(43) 2 5.23x107% 6.93x107% 6.92x 1076 7.02x 10~°
tgacttt A%18taataa 1505(55) 2 1.12x107° 1.30x107° 1.30x107% 1.30 x 10~°

gacttt A%Btaataa 1386(55) 2 9.52x 1075 1.08 x 107* 1.08 x 10~* 1.08 x 10~
gttgacaAl®8at ataat 1066(35) 1 5.63x107* 6.10x 107* 6.10x 10~* 6.10 x 1074
ttgacacA'%8ataataa 979(28) 1 6.39x107% 6.99x107* 6.98x 107* 6.98 x 1074
gttgacA'%Sctataat 1392(43) 1 6.39x107* 6.84x107* 6.84 x10~* 6.84 x 10~*

TaBLE 3: Thel5 most significant structured motif$) indicates the motif. (resp. F') the number of states (resp. final
states) of the smallest non 1-ambiguous associated DFAsdhs number of observed occurrences in the dataset and

the subscript means that the probability is computed assuming statignari

previous method took 3277 seconds on a IBM F80 computer. @pnoach is hence more than 100 times

faster than the previous one which is a dramatic improvement

Itis nevertheless importantto point out that the compatetiperformed in Stefanov et al. (2006) were not
seeking for numerical performance. Moreover, StefanoV. ¢2806) consider the problem as two competing
patterns rather than a single (highly degenerated oneYwhaults in a marginal increasement of complexity
with the gap length while the single pattern approach presehere is geometrically dependant with this

parameter.

On should note that is it possible to adapt the PMC framewmakdompeting pattern problem by splitting
the subset of final states int6 = F; U F> where F; (resp. F2) contains the final states associated to
the patternw, (resp. ws). If we consider then the corresponding decomposition eftthnsition matrix

IT = P+Q1+Q- itisthen possible to get the the distribution of a struatiyattern in a very straightforward
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way:
P(wy A%ws starts ini) = i, P7~™ x PI1172Q; x P4 x Plw2l=1Q, xeL
—_— — T — 2
up tos w1 gap wa
If we consider for example; =t t gaca, w, = at at aat and16 < d < 18, the smallest-unambiguous

DFA that allows to count bothy; andw, hasL = 16 states (while the DFA associated to the full structured

motif hasL = 1527 states) we get

17 100
P(wy A Sws) ~ >N " P(wy Aw, starts ini) = 3.06 x 107°
d=16 i=1

which is very close to the exact solutich(@ x 10~° in Stefanov et al., 2006) despite the fact that important
dependencies are not here taken into account.

This alternative approach obviously need more work to degdrously with the problem but seems
already appealing since it combines the interest of thetingisnethod and of the new one. Indeed most
of the complex combinatorial aspects of the problem are elade in the PMC (which state space is greatly
reduced) and, like in Stefanov et al. (2006), dealing witgéa gaps is not a problem.

Finally, let us add that our PMC approach to structured mdtive several natural extensions which are

likely to be difficult to get with previous approaches:
e structured motifs with degenerated patterns (possiblyaofble lengths) instead of simple words;
e structured motifs with more than two patterns;
e heterogeneous background models.

In order to illustrate this last point, we propose to consitie following heterogeneous Markov model

overA = {a,c,qg,t }: the starting distribution; (MLE estimate using the dataset) is given by:

_ (50 17 23 41
Fr=1\131 131 131 131

and the heterogeneous (and arbitrary) transition matrix by

(100-4) o (-2,

wi(a,b) = ]P)(Xl = b|X1',1 = a) = 93 T + 03 ™ Va,b S A,V2 <1< 100
where
0.5 0.1 0.1 0.3 0.1 04 04 0.1
0 0.2 02 03 04 1 0.4 03 0.1 0.2
T = and 7 =
04 03 0.2 0.1 0.6 0.2 0.1 0.1

03 02 03 0.2 03 02 01 04
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m| 0 1 2 3
L 329 1393 10688 134746
F | 30 78 633 3045

TABLE 4: Characteristics of the smallest nem-ambiguous DFA associated to the cyclic nucleotide-bigdiomain
signature 2 (PS00889): [LIVMF]-G-E-Xx-[GAS]-[LIVM]-x(8,1)-R-[STAQ]-A-X-[LIVMA]-x-[STACV] (cardinality ~
10?2). L denotes the number of states afdhe number of final states.

Using the PMC framework, it is then easy to compute the exambability to observe at least one
occurrence of a structured pattern in a random sequencendzilaer according to an homogeneous model

or according to the heterogeneous one defined above:

6.863712 x 10~%  with the homogeneous transition
P(N(ttgactt A'%'®ataataa) > 1) = ¢ 8.795492 x 10~% with the homogeneous transition$

1.549870 x 10~%  with the heterogeneous transitions

4.2. PROSITE signatures

Another interesting family of biological patterns are thgnatures of the PROSITE database Hulo et al.
(2006). This database contains protein consensus pafmrmsany of functional families. As protein
are simple sequences of amino-acids (dize- 20 alphabet), the PROSITE signatures are often highly
degenerated.

For example, the cyclic nucleotide-binding domain sigrafi(PS00889 entry of the PROSITE database)
is: [LIVMF]-G-E-x-[GAS]-[LIVM]-X(5,11)-R-[STAQ]-A-x- [LIVMA]-x-[STACV] (“x” means “any amino-
acid”, “[GAS]” means “any of those inside the brackets” an¢5,11)" is a gap of length betweérand11).

The cardinality of this pattern i50%? which is huge but we can see on table 4 that the characteristihe
smallest associated-unambiguous DFA are far smaller. Of course the number ¢ésigrows quickly with
m but fortunately, protein sequences are usually modelizédlaw order Markov chainsie < 2).

We consider now thé 332 signatures of the PROSITE database (release 19.23) andsetabnsisting
of 280 proteins from the SWISS-PROT database Gasteiger(@04l1) which belongs to the transmembrane
type (according to their annotations) with a total lengtB4f.92 amino-acids. We use the dataset to estimate
an independent homogeneous model (order 0 Markov model) and want to point out significant over-
represented PROSITE signatures in our transmembranersezgie

The 27 signatures which appear at least one time in the transmeraliataset are listed in table 5. For

example, we can see that the signature PS00007 (Tyrosias&iphosphorylation site) appears 102 times
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in the dataset but that the corresponding p-valuég) is unsignificant. The signature definition is [RK]-
X(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y which gives a ardinality of 25.6 millions, but the number of
states (resp. final states) of the smallest unambiguousiatst DFA is onlyL = 72 (resp.F' = 19). The
computational time is also given in the table and we can sakitlhighly depends on the combinatorial
complexity of the considered signature ranging from a cewplseconds for the simplest ones to more than

one hour for the most complicated one.

In the paper Nicodeme et al. (2002), the author used a DFAoagprto compute exact order one and
two moments through formal computations and generatingtfons in the independent case. Using the
extension of their method we presented here, we are able tougdh more with a dramatic improvementin

terms of efficiency.

Two significant signatures are especially interesting bseahey have a high number of occurrences
in the dataset: PS00008 and PS00294. The first one is anthdtathe PROSITE database as a N-
myristoylation site and the second one as a Prenyl groupirmingite. It could be interesting to further

investigate the biological relevance of this site for traesnbrane proteins.

5. Conclusion

In this paper, we push forward the idea of using DFA to prodaoeent generating functions of pattern
random occurrences to the next level. By introducing thenfdrnotion of PMC (proposed along with
explicit construction algorithms), we provide an optimaywto perform Markov chain embedding for a

wide range of pattern problem.

In order to illustrate the usefulness of the notion of PMC, explain in detail how we can use it
to compute the exact distribution of a pattern using onlyidaparse linear algebra and straightforward
recurrences. We also compare the numerical complexity isf @approach to those of various classical
asymptotic approximations (Gaussian, binomial, Poissaiage deviation) for which the PMC framework
bring both effectiveness and simplicity.

We finally consider practical applications of these resojtsonsidering two examples of highly degener-
ated pattern problem. The first one concerns structuredsnetiich distributions have already been studied
by Robin et al. (2002); Stefanov et al. (2006).

Despite the fact that our general approach does not contsidgrroblem from the competing patterns

point of view (like the previous approaches do), it is nelvelgss able to perform the computation up to 100
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ID L F
PS01243 | 1656 10

P(N > Nops) time (s)
6.6 x 10~14 48.4

Nobs

2
PS01270 | 270 2 1 5.8 x 10711 3.4
PS00556 50 1 2 7.5 x 1071 1.4
PS01114 12 1 2 9.5 x 10711 0.4
PS01188 14 1 2 1.3 x 1079 0.3
PS01218 | 261 2 2 2.5x 1078 6.4
PS01133 | 8840 136 1 3.0x 1078 168.0
PS01214 11 1 1 3.4x 1076 0.2

1

PS01246 | 1332 40 3.4x107° 20.3
PS00008 64 32 1141 49x10°6 1961.6

PS00294 9 3 387 3.2x107° 56.5
pPS01221 | 427 14 1 1.5 x 1074 4.9
PS00004 7 2 129 1.8x 1074 12.3
PS01128 | 2587 63 1 9.0 x 10~* 44.9
PS01309 59 2 1 1.1x 1073 0.7
PS00006 12 4 1034 81x 1073 406.5
PS00016 4 1 16 2.9x 1072 1.1
PS00009 ) 1 53  5.7x 1072 4.6
pPS00217 | 1152 40 1 6.7 x 1072 14.2
PS00133 40 3 1 1.1 x 1071 0.6
PS00007 72 19 102 1.4x 1071 104.6
PS00001 9 3 398 3.6x 107! 58.8
PS00029 | 20480 4096 15 4.8 x 107! 5173.3
PS00430 17 2 1 7.4 %1071 0.2
PS00017 60 4 2 92x107! 1.5
PS00005 6 2 955 9.4 x 1071 240.2
PS00342 ) 2 1073 1.0x 107° 548.8

TABLE 5: The27 PROSITE signatures (out df 332) that appear at least once in the transmembrane datasese The
signatures are ordered by increasing exact p-values cadputreference with an orden = 0 Markov model which
parameters are estimated on the datasgresp. F') is the number of states (resp. of final states) of the snidllEA

that recognize the patteriVons is the number of observed occurrence in the transmembraasatand®(N > Nops)

is the p-value of the observation. The indicated time is trezall running time to build the DFA, count the occurrences
and perform the exact p-value computation using a Intel 24 84 workstation. A significance threshold3$ x 10~°

(5% threshold with Bonferroni correction) is represented bylkddine.
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times faster than the previous (but not optimized) oness ttawever clear that this approach will not be
able to deal with longer gaps without a significant additlamanputational effort. The counterpart of this

drawback is a more flexible method allowing for example teetako account several occurrences in the
same sequence or to consider heterogeneous models.

Like in Nicodeme et al. (2002) we also considered the sigedtom the PROSITE database. As these
signature are often built from poorly conserved proteinmsages, many of them present high combinatorial
complexity. As a consequende% of the PROSITE patterns considered by Nicodeme et al. (208&)not
tractable, the largest automaton successfully processdadd946 states. In the present study however, our
more straightforward Markov chain embedding approachaalas to treat all signatures with our largest
automaton having 20 480 states which dramatically outpertbe previous method.

Finally, let us add that all these results are already implated in the Statistic for Patterns package

(SPatt, freely available &t t p: / / st at . genopol e. cnrs. fr/spatt).
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